Speed discrimination in the far monocular periphery: A relative advantage for interocular comparisons consistent with self-motion
نویسندگان
چکیده
Some animals with lateral eyes (such as bees) control their navigation through the 3D world using velocity differences between the two eyes. Other animals with frontal eyes (such as primates, including humans) can perceive 3D motion based on the different velocities that a moving object projects upon the two retinae. Although one type of 3D motion perception involves a comparison between velocities from vastly different (monocular) portions of the visual field, and the other involves a comparison within overlapping (binocular) portions of the visual field, both compare velocities across the two eyes. Here we asked whether human interocular velocity comparisons, typically studied in the context of binocularly overlapping vision, operate in the far lateral (and hence, monocular) periphery and, if so, whether these comparisons were accordant with conventional interocular motion processing. We found that speed discrimination was indeed better between the two eyes' monocular visual fields, as compared to within a single eye's (monocular) visual field, but only when the velocities were consistent with commonly encountered motion. This intriguing finding suggests that mechanisms sensitive to relative motion information on opposite sides of an animal may have been retained, or at some point independently achieved, as the eyes became frontal in some animals.
منابع مشابه
Perceived speed of motion in depth is reduced in the periphery
The perceived speed of motion in depth (MID) for a monocularly visible target was measured in central and peripheral vision using a 2AFC speed discrimination task. Only binocular cues to MID were available: changing disparity and interocular velocity difference (IOVD). Perceived speed for monocular lateral motion and perceived depth for static disparity were also assessed, again in both central...
متن کاملSpatial scale of stereomotion speed processing.
To examine the spatial scale of the mechanisms supporting the perception of motion in depth defined by binocular cues, we measured stereomotion speed discrimination thresholds as a function of stimulus size using a two-interval speed comparison task. Stimuli were either random dot stereogram (RDS) bars featuring both the changing disparity (CD) and the interocular velocity difference (IOVD) cue...
متن کاملSpeed discrimination of motion-in-depth using binocular cues
Although it is well known that motion-in-depth can be detected using binocular cues, it is not known whether those cues can be used to judge the speed of an object moving in depth. There are at least two possible binocular cues that could be used by the visual system to calculate three dimensional (3-D) speed: the rate of change of binocular disparity, or a comparison of the speeds of motion in...
متن کاملStereomotion suppression and the perception of speed: accuracy and precision as a function of 3D trajectory.
The precision and accuracy of speed discrimination performance for stereomotion stimuli were assessed for several receding 3D trajectories confined to the horizontal meridian. It has previously been demonstrated in a variety of tasks that detection thresholds are substantially higher when subjects observe a stereomotion stimulus than when simply viewing one of its component monocular half-image...
متن کاملBinocular contrast discrimination needs monocular multiplicative noise
The effects of signal and noise on contrast discrimination are difficult to separate because of a singularity in the signal-detection-theory model of two-alternative forced-choice contrast discrimination (Katkov, Tsodyks, & Sagi, 2006). In this article, we show that it is possible to eliminate the singularity by combining that model with a binocular combination model to fit monocular, dichoptic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2016